摆钟是利用摆锤的周期性振动(摆动)过程来计量时间,时间=摆的振动周期×振动次数。而摆的振动周期 T=2π(l/g)^0.5。
一般来说,摆的重量是确定的,调节摆的引用长度(l)即可调整摆的振动周期。摆的引用长度减短,时钟变快;反之则变慢。对精密摆钟,也有用附加重物法来微调摆的振动周期。
摆钟放置在不同的地理位置(不同的地球纬度和海拔高度)中,摆锤的重力加速度会发生变化从而影响其振动周期。摆钟放置在不同温度和气压的环境中,也会引起振动周期的变化。温度变化会引起摆的各部分尺寸包括摆的引用长度的变化。
一般是温度升高,摆胀长而钟变慢;反之则摆缩短而钟变快。因此,精密摆钟常用不同的线胀系数的材料制成温度补偿管,以补偿温度影响。气压的变化会引起空气阻力和空气密度的变化,从而引起振动周期的变化。因此,精密的摆钟常将摆安装在恒压的壳体中,以消除气压影响。
摆的振动幅度影响到钟的等时性。振幅愈小,振幅变化所造成的日差(见钟表日差)变化愈小,即等时性愈好,因而精密摆钟常采用长摆杆小摆幅。但是,小摆幅对外界来的震动和撞击很敏感,因而对安装环境要求很高。摆钟的走时日差一般可以达到20秒/天以内,精密摆钟达千分之几秒。
摆钟是机械钟。有的石英电子钟虽然也装有摆锤或扭摆,但只起装饰作用。
扩展资料:
摆钟结构
摆钟的结构大体上可分为走时部分、打点部分、指针部分和打点控制部分。
1.走时部分
由头轮(即条盒轮,内装发条)、二轮、三轮(中心轮)、四轮、擒纵轮、擒纵叉、摆锤等组成。
2.打点部分
由打点条盒轮、打点二轮、打点三轮、打点四轮,打点五轮及风轮组成。
3.指针部分
由分轮、跨轮和时轮组成。结构原理与闹钟基本相同。
4.打点控制部分
摆钟每隔半小时打点一次,整点敲击的次数必须与时针指示的时刻相同,因此,它的打点必须由走时来控制。在走时和打点之间有一个具有控制打点次数的机构,它由二角凸轮、十二角凸轮、扇形齿、抬闸杠杆、开关杠杆、拨齿凸轮等组成
参考资料来源:百度百科-摆钟-工作原理
摆钟是利用摆锤的周期性振动(摆动)过程来计量时间,时间=摆的振动周期×振动次数。而摆的振动周期 T=2π(l/g)^0.5
一般来说,摆的重量是确定的,调节摆的引用长度(l)即可调整摆的振动周期。摆的引用长度减短,时钟变快;反之则变慢。对精密摆钟,也有用附加重物法来微调摆的振动周期。摆钟放置在不同的地理位置(不同的地球纬度和海拔高度)中,摆锤的重力加速度会发生变化从而影响其振动周期。摆钟放置在不同温度和气压的环境中,也会引起振动周期的变化。温度变化会引起摆的各部分尺寸包括摆的引用长度的变化。一般是温度升高,摆胀长而钟变慢;反之则摆缩短而钟变快。因此,精密摆钟常用不同的线胀系数的材料制成温度补偿管,以补偿温度影响。气压的变化会引起空气阻力和空气密度的变化,从而引起振动周期的变化。因此,精密的摆钟常将摆安装在恒压的壳体中,以消除气压影响。
摆的振动幅度影响到钟的等时性。振幅愈小,振幅变化所造成的日差(见钟表日差)变化愈小,即等时性愈好,因而精密摆钟常采用长摆杆小摆幅。但是,小摆幅对外界来的震动和撞击很敏感,因而对安装环境要求很高。摆钟的走时日差一般可以达到20秒/天以内,精密摆钟达千分之几秒。
摆钟是机械钟。有的石英电子钟虽然也装有摆锤或扭摆,但只起装饰作用
在伽俐略十八岁那年,一次到比萨教堂去做礼拜,他注意到教堂里悬挂的那些长明灯被风吹得一左一右有规律地摆动,他按自己脉博的跳动来计时,发现它们往复运动的时间总是相等的。做实验时发现以一定长度的绳子系着一块重物,加以外力使它摆动,则不管摆动幅度是大是小,也不管所系的物体是轻是重,每摆动一次的时间都完全相同,这就是「钟摆原理」。就这样伽利略发现了摆的等时性。
后来荷兰物理学家惠更斯根据这个原理制成挂摆时钟,人们称之为"伽利略钟"。
一个钟摆,一会儿朝左,一会儿朝右,周而复始,来回摆动。钟摆总是围绕着一个中心值在一定范围内作有规律的摆动,所以被冠名为钟摆理论。
摆是一种实验仪器,可用来展现种种力学现象。最基本的摆由一条绳或竿,和一个锤组成。锤系在绳的下方,绳的另一端固定。当推动摆时,锤来回移动。摆可以作一个计时器。
垂直平面的线的交角,θ0为θ的最大值,m为锤的质量, 表示角度加速度。忽略空气阻力以及绳的弹性、重量的影响:
锤速率最高是在θ = 0时。当锤升到最高点,其速率为0。绳的张力没有对锤做功,整个过程中动能和位能的和不变。 运动方程为: 注意不论θ的值为何,运动周期和锤的质量无关。
当θ相当小的时候,,因此可得到一条齐次常系数微分方程。此为一简谐运动,周期。