如何在Hadoop 2.0上实现深度学习

2025-03-04 21:17:16
推荐回答(1个)
回答1:

位于波士顿的数据科学团队正在利用前沿的工具和算法,通过对用户数据的分析来优化业务行为。 数据科学很大程度上依赖机器算法,它能帮助我们发现数据的特征。要想洞察互联网般规模的数据还是很有挑战的,因此能够大规模的运行算法成为了我们的关键需求。随着数据的爆炸性增长,以及随之而来的上千节点集群,我们需要将算法的运行适配到分布式环境。在通用的分布式计算环境中运行机器学习算法,这本身有它自己的挑战。
  下面我们就将一起探讨如何将深度学习(最前沿的机器学习框架)部署到Hadoop的集群中。还将提供如何对算法进行修改以便适应分布式环境。同时还将展示在标准数据集下的运行结果。
  深度信念网
  深度信念网(DBN)是一种图模型,可以通过对受限玻尔兹曼机(RBM)以贪婪和无监督的方式进行叠加和训练获得。采用对被观察的x向量和第I隐层的接点进行建模的方式,我们可以训练DBN来提取训练数据的深度层级表示, 这里每个隐层的分布基于它紧邻的上一层的条件。