沸石分子筛材料在石油精细化工及环境治理等方面发挥着巨大的作用。通常,绝大多数沸石分子筛都是需要在有机模板参与的条件下合成,然而使用的大部分模板剂都是有毒的,这对沸石的实际生产应用有着强烈的影响。绿色合成路线是指使用较为绿色的原料来合成目标产品,并且在合成过程中减少甚至消除对环境的负面影响、减少废物的排放和提高效率。
首先,沸石分子筛所需的原料混合后,主要物种硅酸盐与铝酸盐聚合生成硅铝酸盐初始凝胶。这种硅铝酸盐凝胶是在高浓度条件下快速形成的,因此具有很高无序度,但是这种硅铝酸盐凝胶中可能含有某些初级结构单元,如:四元环、六元环等等。同时,这种凝胶和液相之间建立了溶解平衡。另外,硅铝酸根离子的溶度积与凝胶的结构和温度息息相关,随着晶化温度的变化,这种凝胶和液相之间建立起新的凝胶和溶液的平衡。其次,液相中多硅酸根与铝酸根浓度的增加导致晶核的形成,然后是沸石分子筛晶体的生长。在沸石分子筛的成核和晶体生长过程中,消耗了液相中的多硅酸根与铝酸根离子,从而引起硅铝凝胶的继续溶解。由于沸石晶体的溶解度小于无定形凝胶的溶解度,最后结果是凝胶的完全溶解,沸石分子筛晶体的完全生长。
对于合成沸石分子筛,温度是一个很重要的因素。温度变化会影响水在反应釜中的压力的变化、硅铝酸盐的聚合状态和聚合反应、凝胶的生成和溶解与转变、分子筛的成核与生长以及介稳相间的转晶。相同的体系在不同的温度下可能会得到完全不一样的物相,温度越高得到的沸石的尺寸和孔体积越小,晶体骨架密度相应增大。一般而言在150C以下,初级结构往往是四元环或六元环,而当温度高于150C,则往往是五元环的初级结构单元。由此可见,在高温水热条件下,无机物(主要是硅铝酸盐物种)的造孔规律和晶化温度与水蒸汽压之间存在着密切的联系。
为克服常规水热法合成沸石分子筛过程中由于溶剂水的引入造成的含碱废水排放,合成体系压力过高、单釜产率过低等问题,人们开发出了无溶剂法绿色沸石分子筛合成路线。过对晶化过程中晶化产物的表征结果发现,无溶剂法合成沸石分子筛经历如下过程:晶化初期,固相原料在无定形二氧化硅中逐渐发生扩散,并伴随着硅物种的聚合;随着晶化时间的延长,无定形的二氧化硅逐渐向晶体转换。总的来说,固相合成反应过程经历了初始原料混合和扩散,硅羟基的不断缩合等过程,最终使得反应原料在固相状态下转换为silicalite-1沸石分子筛。
气相合成法
气相合成法是将不含模板剂的分子筛前躯体制备成干凝胶,而后在少量水和有机胺作为液相成分的气氛下,通过一定的温度将其转变为分子筛。1990年Xu等首先提出该法,并成功合成了MFI型分子筛;之后有人利用这种方法合成了ZSM-5和ZSM-35分子筛膜。这种方法的优缺点都非常明显,优点是合成过程无废水产生,混合溶剂可以循环利用,模板剂用量降低,合成分子筛成本更低;缺点是结晶时间长,合成周期久,产物易出现杂相。对于合成分子筛膜,因为加热慢、加热不均匀,沸石就不会在支撑体表面同时成核,进而影响分子筛膜的厚度。
干胶凝胶法
干胶凝胶法是把一定量的沸石合成原料、模板剂和去离子水充分混合均匀后过滤、洗涤,得到无定形凝胶,在凝胶形成后将其烘干变成干粉,最后在水蒸汽气氛下完成合成。这种方法由我国学者徐文旸于1990年提出,并成功合成了ZSM-5分子筛。后来,有人用这种方法合成了具有中等孔尺寸的MFI型沸石纳米晶。该方法的优点:模板剂用量较少,减少废物的排放同时降低合成成本,该法在一定程度上提高产率;缺点是合成过程所使用的干凝胶要先制备水合凝胶而后在将水合凝胶蒸发干得到,制备过程相对复杂,限制了工业应用。
离子热合成法
离子热合成法以离子液体或低共熔混合物同时作为合成反应的溶剂和模板剂进行合成的方法,该法原理与水热合成法相同。2004年,Morris小组报道了分子筛的离子热合成法。2010年,中国科学院大连化学物理研究所采用离子热合成法合成了超大孔(20元环)的磷酸铝分子筛。该方法优点为:离子液体中的有机阳离子起到溶剂和结构导向剂的作用;离子液体中离子间有较强的相互作用,单个分子难以脱离整个体系,加热过程一般不产生蒸汽压,减少高压带来的危险,更适合工业化生产;缺点是合成周期长、能源消耗大,效率低。
气相合成法
气相合成法是将不含模板剂的分子筛前躯体制备成干凝胶,而后在少量水和有机胺作为液相成分的气氛下,通过一定的温度将其转变为分子筛。这种方法的优缺点都非常明显,优点是合成过程无废水产生,混合溶剂可以循环利用,模板剂用量降低,合成分子筛成本更低;缺点是结晶时间长,合成周期久,产物易出现杂相。对于合成分子筛膜,因为加热慢、加热不均匀,沸石就不会在支撑体表面同时成核,进而影响分子筛膜的厚度。
干胶凝胶法
干胶凝胶法是把一定量的沸石合成原料、模板剂和去离子水充分混合均匀后过滤、洗涤,得到无定形凝胶,在凝胶形成后将其烘干变成干粉,最后在水蒸汽气氛下完成合成。该方法的优点:模板剂用量较少,减少废物的排放同时降低合成成本,该法在一定程度上提高产率;缺点是合成过程所使用的干凝胶要先制备水合凝胶而后在将水合凝胶蒸发干得到,制备过程相对复杂,限制了工业应用。
离子热合成法
离子热合成法以离子液体或低共熔混合物同时作为合成反应的溶剂和模板剂进行合成的方法,该法原理与水热合成法相同。该方法优点为:离子液体中的有机阳离子起到溶剂和结构导向剂的作用;离子液体中离子间有较强的相互作用,单个分子难以脱离整个体系,加热过程一般不产生蒸汽压,减少高压带来的危险,更适合工业化生产;缺点是合成周期长、能源消耗大,效率低。
合成沸石分子筛的方法有哪些
沸石分子筛具有晶体的结构和特征,表面为固体骨架,内部的孔穴可起到吸附分子的作用。孔穴之间有孔道相互连接,分子由孔道经过。由于孔穴的结晶性质,分子筛的孔径分布非常均一。分子筛依据其晶体内部孔穴的大小对分子进行选择性吸附,也就是吸附一定大小的分子而排斥较大物质的分子,因而被形象地称为"分子筛"。
分子筛吸附或排斥的功能受分子的电性影响。合成沸石具有根据分子的大小和极性而进行选择性吸附的特殊功能,因而可以对气体或液体进行干燥或纯化,这也是分子筛可以进行分离的基础。合成沸石可以满足工业界对吸附和选择特性产品的广泛需求,在工业分离中也大量应用到合成沸石分子筛。
分子筛对催化科学和技术有巨大的影响。60年代初分子筛裂化催化剂的发明,引发了炼油工业的一场技术革命。70年代发现ZSM-5分子筛的择形性,使得重要的石油炼制和石油化工新工业过程(乙苯生产、甲苯歧化、重油脱蜡等)开发成功。80年代TS-1变价元素杂原子分子筛的出现使分子筛“氧化催化”的领域异常活跃。近年来分子筛在“环保催化”中应用亦发展很快。分子筛在工业催化过程的成功应用激励了分子筛合成、改性、表征、应用研究的广泛开展。分子筛改性最基本的办法是通过二次合成、杂原子同晶取代等途径,改变其骨架组成。AEM对检测纳米级范围的元素及其组成变化十分有利。下面以脱铝Y分子筛和TS-1分子筛为例,介绍AEM在分子筛合成中的应用。
70年代炼油工业面临渣油加工和高辛烷值汽油生产的问题。FCC催化剂必须具有高的水热稳定性、抗重金属污染、减少积炭生成、抑制氢转移反应等特点。
沸石分子筛的合成方法:
1.水热晶化法;2.非水体系合成法;3.干胶转换法;4.无溶剂干粉体系合成法;5.微波辐射合成法;6.蒸汽相体系合成法。