(一)基本原理
氟可以组成独立矿物——氟化物,如萤石(CaF2),并能在许多其他矿物中以类质同象混合物形式出现,在自然界中氟有组成许多化合物的性能,可以同许多金属组成氟化物综合体进行迁移。这些金属是:Li、Be、Ti、B、V、Y、Zr、Nb、Mo、Sn、镧族元素、Hf、Ta、W、Hg、U等。形成矿床的结果是这些综合体开始分离,氟成为自由的和可以自己运移的元素,这样,在矿床或矿化的周围就形成氟的分散晕,而且它的范围比矿体大好几倍。从而氟可作为寻找上述金属矿的指示元素。
中子活化方法可以在野外现场根据氟的分散晕有效地用于普查氟石、磷块岩、磷灰石和稀有金属,而且不需要碎样,并有很高的灵敏度和精度,而且速度快。
对氟的测量是建立在核反应19F(n,α)16N的基础上,采用的中子能量为4MeV,反应截面为10-29m2。中子源是用放射性同位素Po-Be源,由核反应(α,n)产生的中子,其能量平均为4MeV,这样源的输出,对1Bq的α辐射体,其中子产额为5×10-5n/s。
核素16N经β衰变后变为稳定的同位素16O,其半衰期T1/2=7.3s,因此要求野外测量要有很高的速度。同位素16N经β衰变伴随放出γ射线,其能量为6.1MeV。根据这样的能量很容易确定16N,因为其他的无论是天然或是人工的同位素,放出的γ量子的能量均很低。正因为这样,使野外的中子活化方法在测定氟含量时,有着很高的选择性。
除19F(n,α)16N核反应获得16N外,核素16N还可由核反应16O(n,p)16N和15N(n,γ)16N获得。虽然在测量对象里有氧和氮,但上述的两个核反应的源中很少有大于这个能量的;而且第2个反应主要是15N同位素,它的量很少,在天然氮中15N只有0.36%,同时反应截面也很小,约2.0×10-30m2。
(二)野外工作
在野外,地面测氟的中子活化方法有两种方案:步行的和汽车的。
1.步行中子活化测量
这种方法是采用同位素中子源和携带式γ谱仪,如独联体的仪器型号为Сп-3M或Сп-4M。由于中子剂量很大,中子源要有专车运送和保管,在工作时,要保证源同操作者间的安全距离,即快中子流密度对人来说,不得超过20n/(cm2·s);也就是说,对于中子产额为1×107n/s的源,要保证安全工作,操作者与中子源的距离不得小于3.3~4.0m。为记录能量为8MeV的射线,应将原有能谱仪型号Сп-3M或Сп-4(设计是测量3MeV以下的射线)中的晶体NaI(Tl)由原来的80mm×80mm,改为100mm×100mm或150mm×150mm,能谱窗宽选为3.0~3.5MeV,下阈选在4MeV。这样就可以消除自然界中核素的影响。
工作方法同其他的物、化探方法一样,即选择测网,测量是在测点的岩石表面完成的,如果植被太厚,即挖坑深15~20cm,然后进行测量。中子源放入坑中照射时间ta=30s。由于16N的半衰期T1/2=7.3s,则上述的ta=4T1/2=30s,所以活化放射性实际已达饱和值。之后,源取出放进第2个测点。第1个测点,在照射30s后,停tn=5s,即进行tu=15s的测量。这里需强调的,照射时间ta=30s,停止(冷却)时间tn=5s,测量时间tu=15,在全部的测量中都应保持恒定,否则将会产生测量的误差。这样,一个测点只要不到1min即可,当氟的含量很低时,则在每个测点最好测数次,以保证测量的精确性。
在岩石中经常存在氢元素,由于其减弱中子,所以在计算射线的质量吸收系数时应予考虑消除。计算结果表明,岩石的湿度增加0%~20%时,质量吸收系数平均增加0.065%~0.081%,但只使活化γ射线降低10%左右。另一个参数就是岩石的密度,含氟岩石密度的变化不超过±0.25g/cm3,所以它不影响测量结果,然而,致密的岩石(2.4~3.3g/cm3)活化效应平均要比覆盖土(1.3~1.8g/cm3)高30%左右,所以测量经过这两种介质时,需要进行校正。如果测量,要么全在致密的岩石中进行,要么在覆盖土中进行,由于影响小可以不进行校正。
步行中子活化测量,一般采用的比例尺为1:10000,很少为1:5000和1:25000。经验证明,稀有金属和萤石矿床中的相应矿体周围的氟分散晕的最小宽度在8~10m范围内,最合适的测点距为10m。对普查其他矿种时,测点距可适当加大,而对详测,测点距要适当缩小。
异常的一般规则,定义为底数加三倍的均方差,所以按氟的含量,其异常值定为0.1%~0.3%以上,当萤石矿床中的矿体覆盖3~5m的覆土时,比较典型的氟的异常,应选其含量在0.3%以上,对磷灰石矿床、磷块岩矿床和稀有金属矿床,氟是其伴生指示元素,氟的异常含量应选在0.1%以上。
以下举几个典型实例。
实例一,磷灰石矿床覆盖残积-坡积层,厚度2~5m,步行中子活化测量的测网采用20m×20m,测量结果发现的异常同磷灰石矿化密切相关,围岩花岗岩中的氟本底含量为0.1%,闪长岩和混合岩的磷灰岩中的氟含量为0.2%~0.3%,闪长岩发育地段有着工业含量的磷灰石(P2O5含量在3.5%以上),其中氟含量在0.4%以上。该实例如图5-12所示。
图5-12 磷灰石矿床步行中子活化测量结果图
1—花岗岩;2—闪长岩中P2O5<3.5%;3—闪长岩中P2O5>3.5%;4—混合岩
实例二,穿过脉型石英-黄玉云英石中子活化测量结果剖面示于图5-13,钨矿化赋存于花岗岩中,直接在矿体上方观察到很突出的活化γ异常Iγ=90cps,异常的宽度,即Iγ>30cps,达60m,是矿体实际厚度的4倍。应特别注意的是,含有偏高氟含量的花岗岩的活化γ照射量率是很高的,这就是通过氟含量异常来找钨矿的理由所在。
中子活化分析测氟,还可用于寻找宝石矿床,形成的云英岩中的宝石堆积一般都有偏高的氟的含量,并在围岩中有发育的晕圈(周围及上方),中子活化法测氟找宝石,在后贝加尔湖地区已有成功的应用例子。
2.汽车中子活化测量
在比较平坦的地区,为加快普查速度,可进行汽车中子活化测量,基本原理、方法和技术,同步行中子活化相似。
汽车中子活化测量精度是很高的,在南哈萨克斯坦萤石矿床上进行了测量,并按同剖面取样进行了中子活化分析对比,吻合程度相当好,如图5-14所示。
图5-13 钨矿的步行中子-活化测量结果图
1—花岗岩;2—石英-黄玉云英岩体
图5-14 在萤石矿床上汽车中子活化测量
1—砂岩;2—矿体