bytes是字节,是指你向对方发送了一个32字节的数据包——32字节是ping命令默认的
time是发送和返回所用的时间,越短说明网速越快,ms是毫秒
ttl值就麻烦了,
参看PING命令中TTL的具体含义
简单来说,TTL全程Time to Live,意思就是生存周期。
首先要说明ping命令是使用的网络层协议ICMP,所以TTL指的是一个网络层的网络数据包(package)的生存周期,这句话不懂的先回去复习OSI7层协议去。
第一个问题,为什么要有生存周期这个概念。
很显然,一个package从一台机器到另一台机器中间需要经过很长的路径,显然这个路径不是单一的,是很复杂的,并且很可能存在环路。如果一个数据包在传输过程中进入了环路,如果不终止它的话,它会一直循环下去,如果很多个数据包都这样循环的话,那对于网络来说这就是灾难了。所以需要在包中设置这样一个值,包在每经过一个节点,将这个值减1,反复这样操作,最终可能造成2个结果:包在这个值还为正数的时候到达了目的地,或者是在经过一定数量的节点后,这个值减为了0。前者代表完成了一次正常的传输,后者代表包可能选择了一条非常长的路径甚至是进入了环路,这显然不是我们期望的,所以在这个值为0的时候,网络设备将不会再传递这个包而是直接将他抛弃,并发送一个通知给包的源地址,说这个包已死。
其实TTL值这个东西本身并代表不了什么,对于使用者来说,关心的问题应该是包是否到达了目的地而不是经过了几个节点后到达。但是TTL值还是可以得到有意思的信息的。
每个操作系统对TTL值得定义都不同,这个值甚至可以通过修改某些系统的网络参数来修改,例如Win2000默认为128,通过注册表也可以修改。而Linux大多定义为64。不过一般来说,很少有人会去修改自己机器的这个值的,这就给了我们机会可以通过ping的回显TTL来大体判断一台机器是什么操作系统。
以我公司2台机器为例
看如下命令
D:Documents and Settingshx>ping 61.152.93.131
Pinging 61.152.93.131 with 32 bytes of data:
Reply from 61.152.93.131: bytes=32 time=21ms TTL=118
Reply from 61.152.93.131: bytes=32 time=19ms TTL=118
Reply from 61.152.93.131: bytes=32 time=18ms TTL=118
Reply from 61.152.93.131: bytes=32 time=22ms TTL=118
Ping statistics for 61.152.93.131:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss
Approximate round trip times in milli-seconds:
Minimum = 18ms, Maximum = 22ms, Average = 20ms
D:Documents and Settingshx>ping 61.152.104.40
Pinging 61.152.104.40 with 32 bytes of data:
Reply from 61.152.104.40: bytes=32 time=28ms TTL=54
Reply from 61.152.104.40: bytes=32 time=18ms TTL=54
Reply from 61.152.104.40: bytes=32 time=18ms TTL=54
Reply from 61.152.104.40: bytes=32 time=13ms TTL=54
Ping statistics for 61.152.104.40:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss
Approximate round trip times in milli-seconds:
Minimum = 13ms, Maximum = 28ms, Average = 19ms
第一台TTL为118,则基本可以判断这是一台Windows机器,从我的机器到这台机器经过了10个节点,因为128-118=10。而第二台应该是台Linux,理由一样64-54=10。
了解了上面的东西,可能有人会有一些疑问,例如以下:
1,不是说包可能走很多路径吗,为什么我看到的4个包TTL都是一样的,没有出现不同?
这是由于包经过的路径是经过了一些最优选择算法来定下来的,在网络拓扑稳定一段时间后,包的路由路径也会相对稳定在一个最短路径上。具体怎么算出来的要去研究路由算法了,不在讨论之列。
2,对于上面例子第二台机器,为什么不认为它是经过了74个节点的Windows机器?因为128-74=54。
对于这个问题,我们要引入另外一个很好的ICMP协议工具。不过首先要声明的是,一个包经过74个节点这个有些恐怖,这样的路径还是不用为好。
要介绍的这个工具是tracert(*nix下为traceroute),让我们来看对上面的第二台机器用这个命令的结果
D:Documents and Settingshx>tracert 61.152.104.40
Tracing route to 61.152.104.40 over a maximum of 30 hops
1 13 ms 16 ms 9 ms 10.120.32.1
2 9 ms 9 ms 11 ms 219.233.244.105
3 12 ms 10 ms 10 ms 219.233.238.173
4 15 ms 15 ms 17 ms 219.233.238.13
5 14 ms 19 ms 19 ms 202.96.222.73
6 14 ms 17 ms 13 ms 202.96.222.121
7 14 ms 15 ms 14 ms 61.152.81.86
8 15 ms 14 ms 13 ms 61.152.87.162
9 16 ms 16 ms 28 ms 61.152.99.26
10 12 ms 13 ms 18 ms 61.152.99.94
11 14 ms 18 ms 16 ms 61.152.104.40
Trace complete.
从这个命令的结果能够看到从我的机器到服务器所走的路由,确实是11个节点(上面说10个好像是我犯了忘了算0的错误了,应该是64-54+1,嘿嘿),而不是128的TTL经过了70多个节点。
既然已经说到这里了,不妨顺便说说关于这两个ICMP命令的高级一点的东西。
首先是ping命令,其实ping有这样一个参数,可以无视操作系统默认TTL值而使用自己定义的值来发送ICMP Request包。
例如还是用那台Linux机器,用以下命令:
D:Documents and Settingshx>ping 61.152.104.40 -i 11
Pinging 61.152.104.40 with 32 bytes of data:
Reply from 61.152.104.40: bytes=32 time=10ms TTL=54
Reply from 61.152.104.40: bytes=32 time=13ms TTL=54
Reply from 61.152.104.40: bytes=32 time=10ms TTL=54
Reply from 61.152.104.40: bytes=32 time=13ms TTL=54
Ping statistics for 61.152.104.40:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 10ms, Maximum = 13ms, Average = 11ms
D:Documents and Settingshx>
这个命令我们定义了发包的TTL为11,而前面我们知道,我到这台服务器是要经过11个节点的,所以这个输出和以前没什么不同。现在再用这个试试看:
D:Documents and Settingshx>ping 61.152.104.40 -i 10
Pinging 61.152.104.40 with 32 bytes of data:
Reply from 61.152.99.94: TTL expired in transit.
Reply from 61.152.99.94: TTL expired in transit.
Reply from 61.152.99.94: TTL expired in transit.
Reply from 61.152.99.94: TTL expired in transit.
Ping statistics for 61.152.104.40:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 0ms, Average = 0ms
D:Documents and Settingshx>
可以看到,结果不一样了,我定义了TTL为10来发包,结果是TTL expired in transit.就是说在到达服务器之前这个包的生命周期就结束了。注意看这句话前面的ip,这个ip恰好是我们前面tracert结果到服务器之前的最后1个ip,包的TTL就是在这里减少到0了,根据我们前面的讨论,当TTL减为0时设备会丢弃包并发送一个TTL过期的ICMP反馈给源地址,这里的结果就是最好的证明。
通过这里再次又证明了从我机器到服务器是经过了11个节点而不是70多个,呵呵。
最后再巩固一下知识,有人可能觉得tracer这个命令很神奇,可以发现一个包所经过的路由路径。其实这个命令的原理就在我们上面的讨论中。
想象一下,如果我给目的服务器发送一个TTL为1的包,结果会怎样?
根据前面的讨论,在包港出发的第一个节点,TTL就会减少为0,这时这个节点就会回应TTL失效的反馈,这个回应包含了设备本身的ip地址,这样我们就得到了路由路径的第一个节点的地址。
因此,我们继续发送TTL=2的包,也就受到第二个节点的TTL失效回应
依次类推,我们一个一个的发现,当最终返回的结果不是TTL失效而是ICMP Response的时候,我们的tracert也就结束了,就是这么简单。
顺便补一句ping命令还有个-n的参数指定要发包的数量,指定了这个数字就会按照你的要求来发包了而不是默认的4个包。如果使用-t参数的话,命令会一直发包直到你强行中止它。
ping
是DOS命令,一般用于检测网络通与不通
PING (Packet Internet Grope),因特网包探索器,用于测试网络连接量的程序。Ping发送一个ICMP回声清求消息给目的地并报告是否收到所希望的ICMP回声应答。
它是用来检查网络是否通畅或者网络连接速度的命令。作为一个生活在网络上的管理员或者黑客来说,ping命令是第一个必须掌握的DOS命令,它所利用的原理是这样的:网络上的机器都有唯一确定的IP地址,我们给目标IP地址发送一个数据包,对方就要返回一个同样大小的数据包,根据返回的数据包我们可以确定目标主机的存在,可以初步判断目标主机的操作系统等。
Ping 是Windows系列自带的一个可执行命令。利用它可以检查网络是否能够连通,用好它可以很好地帮助我们分析判定网络故障。应用格式:Ping IP地址。该命令还可以加许多参数使用,具体是键入Ping按回车即可看到详细说明。
1.Ping本机IP
例如本机IP地址为:172.168.200.2。则执行命令Ping 172.168.200.2。如果网卡安装配置没有问题,则应有类似下列显示:
Replay from 172.168.200.2 bytes=32 time<10ms
Ping statistics for 172.168.200.2
Packets Sent=4 Received=4 Lost=0 0% loss
Approximate round trip times in milli-seconds
Minimum=0ms Maxiumu=1ms Average=0ms
如果在MS-DOS方式下执行此命令显示内容为:Request timed out,则表明网卡安装或配置有问题。将网线断开再次执行此命令,如果显示正常,则说明本机使用的IP地址可能与另一台正在使用的机器IP地址重复了。如果仍然不正常,则表明本机网卡安装或配置有问题,需继续检查相关网络配置。
2.Ping网关IP
假定网关IP为:172.168.6.1,则执行命令Ping 172.168.6.1。在MS-DOS方式下执行此命令,如果显示类似以下信息:
Reply from 172.168.6.1 bytes=32 time=9ms TTL=255
Ping statistics for 172.168.6.1
Packets Sent=4 Received=4 Lost=0
Approximate round trip times in milli-seconds
Minimum=1ms Maximum=9ms Average=5ms
则表明局域网中的网关路由器正在正常运行。反之,则说明网关有问题。
3.Ping远程IP
这一命令可以检测本机能否正常访问Internet。比如本地电信运营商的IP地址为:202.102.48.141。在MS-DOS方式下执行命令:Ping 202.102.48.141,如果屏幕显示:
Reply from 202.102.48.141 bytes=32 time=33ms TTL=252
Reply from 202.102.48.141 bytes=32 time=21ms TTL=252
Reply from 202.102.48.141 bytes=32 time=5ms TTL=252
Reply from 202.102.48.141 bytes=32 time=6ms TTL=252
Ping statistics for 202.102.48.141
Packets Sent=4 Received=4 Lost=0 0% loss
Approximate round trip times in milli-seconds
Minimum=5ms Maximum=33ms Average=16ms
则表明运行正常,能够正常接入互联网。反之,则表明主机文件(windows/host)存在问题。
--PING命令参数详解
-a 将目标的机器标识转换为ip地址
-t 若使用者不人为中断会不断的ping下去
-c count 要求ping命令连续发送数据包,直到发出并接收到count个请求
-d 为使用的套接字打开调试状态
-f 是一种快速方式ping。使得ping输出数据包的速度和数据包从远程主机返回一样快,或者更快,达到每秒100次。在这种方式下,每个请求用一个句点表示。对于每一个响应打印一个空格键。
-i seconds 在两次数据包发送之间间隔一定的秒数。不能同-f一起使用。
-n 只使用数字方式。在一般情况下ping会试图把IP地址转换成主机名。这个选项要求ping打印IP地址而不去查找用符号表示的名字。如果由于某种原因无法使用本地DNS服务器这个选项就很重要了。
-p pattern 拥护可以通过这个选项标识16 pad字节,把这些字节加入数据包中。当在网络中诊断与数据有关的错误时这个选项就非常有用。
-q 使ping只在开始和结束时打印一些概要信息。
-R 把ICMP RECORD-ROUTE选项加入到ECHO_REQUEST数据包中,要求在数据包中记录路由,这样当数据返回时ping就可以把路由信息打印出来。每个数据包只能记录9个路由节点。许多主机忽略或者放弃这个选项。
-r 使ping命令旁路掉用于发送数据包的正常路由表。
-s packetsize 使用户能够标识出要发送数据的字节数。缺省是56个字符,再加上8个字节的ICMP数据头,共64个ICMP数据字节。
-v 使ping处于verbose方式。它要ping命令除了打印ECHO-RESPONSE数据包之外,还打印其它所有返回的ICMP数据包。
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
=================================================================================
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
《ping的参数!》
Ping 命令可以用来验证与远程计算机的连接。(该命令只有在安装了TCP/IP协议后才能使用)
ping [-t] [-a] [-n count] [-l length] [-f] [-i ttl] [-v tos] [-r
count] [-s count] [[-j computer-list] | [-k computer-list]] [-w
timeout] destination-list
参数说明:
-t :一直Ping指定的计算机,直到从键盘按下Control-C中断。
-a :将地址解析为计算机NetBios名。
-n :发送count指定的ECHO数据包数。,通过这个命令可以自己定义发送的个数,对衡量网络速度很有帮助。能
够测试发送数据包的返回平均时间,及时间的快慢程度。默认值为 4。
-l :发送指定数据量的ECHO数据包。默认为 32 字节;最大值是65500byt。
-f :在数据包中发送“不要分段”标志,数据包就不会被路由上的网关分段。通常你所发送的数据包都会通过路由分
段再发送给对方,加上此参数以后路由就不会再分段处理。
-i :将“生存时间”字段设置为TTL指定的值。指定TTL值在对方的系统里停留的时间。同时检查网络运转情况的。
-v :tos 将“服务类型”字段设置为 tos 指定的值。
-r :在“记录路由”字段中记录传出和返回数据包的路由。通常情况下,发送的数据包是通过一系列路由才到达目
标地址的,通过此参数可以设定,想探测经过路由的个数。限定能跟踪到9个路由。
-s :指定 count 指定的跃点数的时间戳。与参数-r差不多,但此参数不记录数据包返回所经过的路由,最多只记
录4个。
-j :利用 computer-list 指定的计算机列表路由数据包。连续计算机可以被中间网关分隔(路由稀疏源) IP 允许的
最大数量为 9。
-k :computer-list 利用 computer-list 指定的计算机列表路由数据包。连续计算机不能被中间网关分隔(路由严格
源)IP 允许的最大数量为 9。
-w:timeout 指定超时间隔,单位为毫秒。
destination-list: 指定要 ping 的远程计算机。
一般情况下,通过ping目标地址,可让对方返回TTL值的大小,通过TTL值可以粗略判断目标主机的系统类型是Windows还是UNIX/Linux,一般情况下Windows系统返回的TTL值在100-130之间,而UNIX/Linux系统返回的TTL值在240-255之间。但TTL的值是可以修改的。故此种方法可作为参考.
一般操作方法如下:
C:\>ping www.yahoo.com
Pinging www.yahoo.akadns.net [66.218.71.81] with 32 bytes of data:
Reply from 66.218.71.81: bytes=32 time=160ms TTL=41
Reply from 66.218.71.81: bytes=32 time=150ms TTL=41
Reply from 66.218.71.81: bytes=32 time=160ms TTL=41
Reply from 66.218.71.81: bytes=32 time=161ms TTL=41
Ping statistics for 66.218.71.81:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),Approximate
round trip times in milli-seconds:
Minimum = 150ms, Maximum = 161ms, Average = 157ms
--------------------------------------------------------------------------------
Tracerttracert
Tracert 该诊断实用程序将包含不同生存时间 (TTL) 值的 Internet 控制消息协议(ICMP)
回显数据包发送到目标,以决定到达目标采用的路由。要在转发数据包上的 TTL 之前至少递减 1,必需路径上的每个路由器,所以 TTL
是有效的跃点计数。数据包上的 TTL 到达 0 时,路由器应该将“ICMP 已超时”的消息发送回源系统。Tracert 先发送 TTL
为 1 的回显数据包,并在随后的每次发送过程将 TTL递增 1,直到目标响应或 TTL
达到最大值,从而确定路由。路由通过检查中级路由器发送回的“ICMP 已超时”的消息来确定路由。不过,有些路由器悄悄地下传包含过期 TTL
值的数据包,而 tracert 看不到。
tracert [-d] [-h maximum_hops] [-j computer-list] [-w timeout]
target_name
参数说明:
/d 指定不将地址解析为计算机名。
-h maximum_hops 指定搜索目标的最大跃点数。
-j computer-list 指定沿 computer-list 的稀疏源路由。
-w timeout 每次应答等待 timeout 指定的微秒数。
target_name 目标计算机的名称。
一般操作方法如下:
C:\>tracert www.yahoo.com
Tracing route to www.yahoo.akadns.net [66.218.71.81] over a maximum
of 30 hops:
1 10 ms <10 ms <10 ms 192.168.0.7
2 <10 ms 10 ms <10 ms 210.192.97.129
3 <10 ms 20 ms 10 ms 192.168.200.21
4 <10 ms 10 ms 10 ms 203.212.0.69
5 <10 ms 10 ms 10 ms 202.108.252.1
6 10 ms 10 ms <10 ms 202.106.193.201
7 10 ms 20 ms 20 ms 202.106.193.169
8 <10 ms 10 ms 10 ms 202.106.192.226
9 <10 ms 10 ms 10 ms 202.96.12.45
10 20 ms 30 ms 20 ms p-6-0-r1-c-shsh-1.cn.net [202.97.34.34]
11 20 ms 30 ms 30 ms p-3-0-r3-i-shsh-1.cn.net [202.97.33.74]
12 160 ms 161 ms 160 ms if-7-7.core1.LosAngeles.Teleglobe.net
[207.45.193.73]
13 200 ms 201 ms 200 ms if-4-0.core1.Sacramento.Teleglobe.net
[64.86.83.170]
14 190 ms 190 ms 190 ms if-2-0.core1.PaloAlto.Teleglobe.net
[64.86.83.201]
15 160 ms 160 ms 160 ms ix-5-0.core1.PaloAlto.Teleglobe.net
[207.45.196.90]
16 180 ms 180 ms 160 ms ge-1-3-0.msr1.pao.yahoo.com
[216.115.100.150]
17 170 ms 210 ms 321 ms vl10.bas1.scd.yahoo.com [66.218.64.134]
18 170 ms 170 ms 170 ms w2.scd.yahoo.com [66.218.71.81]
===============================================
负是出错了。。。你的操作系统有问题。
时间为负也就代表你的数据包还没发出去,回包就已经收到了。。这怎么可能。
这种情况常见于一键安装的GHOST版XP,系统被阄得太严重了,网络缺组件造成。