不一样
无刷直流电机由电动机主体和驱动器组成,是一种典型的机电一体化产品。 无刷电机是指无电刷和换向器(或集电环)的电机,又称无换向器电机。早在十九纪诞生电机的时候,产生的实用性电机就是无刷形式,即交流鼠笼式异步电动机,这种电动机得到了广泛的应用。但是,异步电动机有许多无法克服的缺陷,以致电机技术发展缓慢。上世纪中叶诞生了晶体管,因而采用晶体管换向电路代替电刷与换向器的直流无刷电机就应运而生了。这种新型无刷电机称为电子换向式直流电机,它克服了第一代无刷电机的缺陷。
工作原理
无刷直流电机由电动机主体和驱动器组成,是一种典型的机电一体化无刷直流电机实物图产品。 电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。电动机的转子上粘有已充磁的永磁体 ,为了检测电动机转子的极性,在电动机内装有位置传感器。驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等。
直流电机具有响应快速、较大的起动转矩、从零转速至额定转速具备可提供额定转矩的性能,但直流电机的优点也正是它的缺点,因为直流电机要产生额定负载下恒定转矩的性能,则电枢磁场与转子磁场须恒维持90°,这就要藉由碳刷及整流子。碳刷及整流子在电机转动时会产生火花、碳粉因此除了会造成组件损坏之外,使用场合也受到限制。交流电机没有碳刷及整流子,免维护、坚固、应用广,但特性上若要达到相当于直流电机的性能须用复杂控制技术才能达到。现今半导体发展迅速功率组件切换频率加快许多,提升驱动电机的性能。微处理机速度亦越来越快,可实现将交流电机控制置于一旋转的两轴直角坐标系统中,适当控制交流电机在两轴电流分量,达到类似直流电机控制并有与直流电机相当的性能。
此外已有很多微处理机将控制电机必需的功能做在芯片中,而且体积越来越小;像模拟/数字转换器(analog-to-digital converter,adc)、脉冲宽度调制(pulse wide modulator,pwm)…等。直流无刷电机即是以电子方式控制交流电机换相,得到类似直流电机特性又没有直流电机机构上缺失的一种应用。
结构
直流无刷电机是同步电机的一种,也就是说电机转子的转速受电机定子旋转磁场的速度及转子极数(p)影响:
n=60.f / p。在转子极数固定情况下,改变定子旋转磁场的频率就可以改变转子的转速。直流无刷电机即是将同步电机加上电子式控制(驱动器),控制定子旋转磁场的频率并将电机转子的转速回授至控制中心反复校正,以期达到接近直流电机特性的方式。也就是说直流无刷电机能够在额定负载范围内当负载变化时仍可以控制电机转子维持一定的转速。
直流无刷驱动器包括电源部及控制部如图 (1) :电源部提供三相电源给电机,控制部则依需求转换输入电源频率。
电源部可以直接以直流电输入(一般为24v)或以交流电输入(110v/220 v),如果输入是交流电就得先经转换器(converter)转成直流。不论是直流电输入或交流电输入要转入电机线圈前须先将直流电压由换流器(inverter)转成3相电压来驱动电机。换流器(inverter)一般由6个功率晶体管(q1~q6)分为上臂(q1、q3、q5)/下臂(q2、q4、q6)连接电机作为控制流经电机线圈的开关。控制部则提供pwm(脉冲宽度调制)决定功率晶体管开关频度及换流器(inverter)换相的时机。直流无刷电机一般希望使用在当负载变动时速度可以稳定于设定值而不会变动太大的速度控制,所以电机内部装有能感应磁场的霍尔传感器(hall-sensor),做为速度之闭回路控制,同时也做为相序控制的依据。但这只是用来做为速度控制并不能拿来做为定位控制。
特点
1、可替代直流电机调速、变频器+变频电机调速、异步电机+减速机调速;直流无刷电机
2、具有传统直流电机的优点,同时又取消了碳刷、滑环结构;
3、可以低速大功率运行,可以省去减速机直接驱动大的负载;
4、体积小、重量轻、出力大;
5、转矩特性优异,中、低速转矩性能好,启动转矩大,启动电流小;
6、无级调速,调速范围广,过载能力强;
7、软启软停、制动特性好,可省去原有的机械制动或电磁制动装置;
8、效率高,电机本身没有励磁损耗和碳刷损耗,消除了多级减速耗,综合节电率可达20%~60%。
9、可靠性高,稳定性好,适应性强,维修与保养简单;
10、耐颠簸震动,噪音低,震动小,运转平滑,寿命长;
11、不产生火花,特别适合爆炸性场所,有防爆型;
12、根据需要可选梯形波磁场电机和正弦波磁场电机。
永磁无刷电动机简介编辑
与传统的电励磁电动机相比,永磁电动机特别是稀土永磁电动机具有结构简单、运行可靠、体积小、质量小、损耗少、效率高,以及电动机的形状和尺寸可以灵活多样等显著优点,因为应用范围极为广泛,几乎遍及航空航天、国防、工农业生产和日常生活的各个领域。
2永磁无刷电动机的结构编辑
永磁无刷电动机可以看做是一台用电子换相装置取代机械换相的直流电动机,如图1 所示,永磁
永磁直流无刷电动机结构
直流无刷电动机主要由永磁电动机本体、转子位置传感器和电子换向电路组成。无论是结构或控制方式,永磁直流无刷电动机与传统的直流电动机都有很多相似之处:用装有永磁体的转子取代有刷直流电动机的定子磁极;用具有多相绕组的定子取代电枢;用由固态逆变器和轴位置检测器组成的电子换向器取代机械换向器和电刷。
电动机本体
电动机本体和永磁同步电动机(PMSM)相似,转子采用永磁磁铁,目前多使用稀土永磁材料,但没有笼式绕组和其他启动装置。其定子绕组采用交流绕组行驶,一般支撑多相(三相、四相或五相),转子由永磁钢按一定极对数(2P=2,4,6…)组成。设计中要求在定子绕组中获得顶宽为120°的梯形波,因此绕组行驶往往采用整距、集中或接近整距、集中的形式,以便保留磁密中的其他谐波。有刷直流电动机是依靠接卸换向器将直流电流转换位近似梯形波的交流电流供给电枢绕组,而无刷直流电动机是依靠电子换向器将方波电流按一定的相序逐次输入到定子的各相电枢绕组中。当无刷直流电动机定子绕组的某相通电时,该相电流产生的磁场与转子永久磁铁所单胜的磁场相互作用而产生的磁场相互作用而产生转矩,驱动转子旋转。位置传感器将转子磁铁位置变换成电信号去控制电子开关线路,从而使定子的各项绕组按一定的次序导通,使定子的相电流随转子位置的变化而按正确的次序换相。这样才能让电子磁场随转子的旋转不断地变化、产生于转子转速同步的旋转磁场,并使定子磁场与转子的磁场始终保持90°左右的空间角,用最大转矩推动转子旋转。由于电子开关线路的导通次序与转子转角同步,起到机械换向器的换向作用,保证了电动机在运行过程中定子与族汉子的磁场始终保持基本垂直,以提高运行效率。所以无刷直流电动机就其基本结构而言,可以人为是一台由电子开关换相电流、永磁式同步电动机以及位置传感器三者组成的“自同步电动机系统”,它在运行过程中不会失步。永磁无刷电动机BLDCM 的转子结构既有传统的内转子结构,又有今年来出现的额盘式结构、外转子结构和线性结构等新型结构形式,伴随着新型永磁材料的实用化,电动机转子的结构越来越多样化,使电动汽车电机永磁无刷电动机BLDCM 正朝着高出力、高精度、微型化合耐环境等多种用途发展。
转子位置传感器
转子位置传感器有光电式、磁敏式和电磁式三种类型。
采用光电式位置传感器的无刷直流电动机,在定子组件上按一定位置配置了光电传感器件,转子装有遮光板,光源为发光二极管或小灯泡。转子旋转时,由于遮光板的作用,定子上的光敏元器件将会按一定频率间歇发出脉冲信号。
磁敏式位置传感器是指它的某些点阐述随周围磁场按一定规律变化的半导体敏感元件,其基本原理为霍尔效应和磁阻效应。磁敏元件的主要工作原理是电流的磁效应,主要是霍尔效应。采用磁敏式位置传感器的无刷直流电动机,其磁敏传感器件(如霍尔元件、磁敏二极管、磁敏三极管、磁敏电阻器或专用集成电路)装载定子组件上,用来检测永磁体、转子旋转时产生的磁场变化。
采用电磁式位置传感器的无刷直流电动机,是在定子组件上安装电磁传感器部件,当永磁体转子位置发生变化时,电磁效应将使电磁传感器长生高频调制信号(其幅值随转子位置的变化而变化)。
几年来还出现了无位置传感器的无刷直流电动机,词中电动机利用定子绕组的反电动势作为转子磁铁的位置信号,该信号检出后,经数字电路处理,送给逻辑开关电路去控制无刷直流电动机的换向。由于它省去了位置传感器,是的无刷电动机的结构更加紧凑,所以应用日趋广泛。
电子换向器
电子换向电路由功率变换电路和控制电路两大部分组成,它与位置传感器相配合,控制电动机定子各相绕组的通电顺序和时间,起到与机械换向类似的作用。
当系统运行时,功率变换器接受控制电路的控制信息,间该系统工作电源的功率以一定的逻辑关系分配给直流无刷电动机定子上的各相绕组,以便使电动机产生持续不断的转矩。逆变器将直流电流转换成交流电流想电动机供电,与一般逆变器不同,它输出频率不是独立调节的,而是受控于转子位置信号,是一个“自控式逆变器”。永磁无刷电动机BLDCM 由于采用自控式逆变器,电动机输入电流的频率和电动机转速始终保持同步,电动机和逆变器不会产生振荡和失步,这也是永磁无刷电动机BLDCM 的显著优点之一。
电动汽车电机电动机各项绕组导通的顺序和时间主要取决于来自位置传感器的信号,但位置床干起所产生的信号一般不能直接用来驱动功率变换器的功率开关元件,往往需要经过控制电路进行逻辑处理、隔离放大后才能驱动功率变换器的开关元件,往往需要经过控制电路进行逻辑处理、隔离方法后才能驱动功率变换器的开关元件。驱动空盒子电路的作用是将位置传感器检测到的转子位置信号进行处理,按一定的逻辑代码输出,去触发功率开关管。
永磁无刷直流电动机的工作原理
永磁无刷直流电动机的控制系统主要有永磁无刷直流电动机、直流电压、逆变器、位置传感器和控制器几部分组成,采用“三相六拍—120°方波型”驱动。如图所示5.21所示。
永磁无刷直流电动机的控制系统的工作原理图
永磁刷刷直流电动机通过逆变器功率管按一定的规律导通、关断,使电动机定子电枢产生按60°电角度不断前进的磁势,带动电动机转子旋转来实现的。分析如图5.21所示。图a是理想条件下的电枢各相反电势和电流,每个功率管导通120°电角度,互差60°电角度,当功率管V3和V4导通时,电动机的V和—U(电流流进绕组方向为正向)相通(参考图1)。定子电枢合成磁势为图b所示的Fa5;若功率管V3关断,功率管V5导通,此时电动机的W相和—U相通电,电枢合成磁势变为Fa5,Fa5 比Fa4顺时针前进了60°电角度。由此可知,定子电枢产生的磁势将随着功率管有规律地不断导通和关断,并按60°电角度不断地顺时针转动。逆变器功率管共有六种出发组合状态,每种出发组合状态只有与确定的转子位置或发电动机波形相对应,才能产生最大的平均电磁转矩。当两个磁势向量的夹角为90°是,相互作用力最大。而电子电枢产生的磁势是以60°电角度在前进,因此在每种出发模式下,转子磁势与定子磁势的夹角在
永磁无刷直流电动机的工作原理图
60°~120°范围变化才能产生最大的平均电磁转矩。如图c所示,假如在t1时刻,转子的此时Fj处于线圈U、X平面内,且使转子顺时针旋转,此时应该导通功率管V5和V4,使定子的合成磁势为Fa5与Fj的夹角成120°。转子在Fa5与Fj相互作用产生电磁转矩的作用下顺时针旋转,到t3时刻Fa5与Fj的夹角成60°,此时关断功率管V4,导通功率管V6,定子合成磁势为Fa6,与Fj的夹角成120°,两者产生的电磁转矩使转子进一步旋转。
有区别的,你可以看看
与传统的电励磁电动机相比,永磁电动机特别是稀土永磁电动机具有结构简单、运行可靠、体积小、质量小、损耗少、效率高,以及电动机的形状和尺寸可以灵活多样等显著优点,因为应用范围极为广泛,几乎遍及航空航天、国防、工农业生产和日常生活的各个领域。
2永磁无刷电动机的结构编辑
永磁无刷电动机可以看做是一台用电子换相装置取代机械换相的直流电动机,如图1 所示,永磁
永磁直流无刷电动机结构
直流无刷电动机主要由永磁电动机本体、转子位置传感器和电子换向电路组成。无论是结构或控制方式,永磁直流无刷电动机与传统的直流电动机都有很多相似之处:用装有永磁体的转子取代有刷直流电动机的定子磁极;用具有多相绕组的定子取代电枢;用由固态逆变器和轴位置检测器组成的电子换向器取代机械换向器和电刷。
电动机本体
电动机本体和永磁同步电动机(PMSM)相似,转子采用永磁磁铁,目前多使用稀土永磁材料,但没有笼式绕组和其他启动装置。其定子绕组采用交流绕组行驶,一般支撑多相(三相、四相或五相),转子由永磁钢按一定极对数(2P=2,4,6…)组成。设计中要求在定子绕组中获得顶宽为120°的梯形波,因此绕组行驶往往采用整距、集中或接近整距、集中的形式,以便保留磁密中的其他谐波。有刷直流电动机是依靠接卸换向器将直流电流转换位近似梯形波的交流电流供给电枢绕组,而无刷直流电动机是依靠电子换向器将方波电流按一定的相序逐次输入到定子的各相电枢绕组中。当无刷直流电动机定子绕组的某相通电时,该相电流产生的磁场与转子永久磁铁所单胜的磁场相互作用而产生的磁场相互作用而产生转矩,驱动转子旋转。位置传感器将转子磁铁位置变换成电信号去控制电子开关线路,从而使定子的各项绕组按一定的次序导通,使定子的相电流随转子位置的变化而按正确的次序换相。这样才能让电子磁场随转子的旋转不断地变化、产生于转子转速同步的旋转磁场,并使定子磁场与转子的磁场始终保持90°左右的空间角,用最大转矩推动转子旋转。由于电子开关线路的导通次序与转子转角同步,起到机械换向器的换向作用,保证了电动机在运行过程中定子与族汉子的磁场始终保持基本垂直,以提高运行效率。所以无刷直流电动机就其基本结构而言,可以人为是一台由电子开关换相电流、永磁式同步电动机以及位置传感器三者组成的“自同步电动机系统”,它在运行过程中不会失步。永磁无刷电动机BLDCM 的转子结构既有传统的内转子结构,又有今年来出现的额盘式结构、外转子结构和线性结构等新型结构形式,伴随着新型永磁材料的实用化,电动机转子的结构越来越多样化,使电动汽车电机永磁无刷电动机BLDCM 正朝着高出力、高精度、微型化合耐环境等多种用途发展。
转子位置传感器
转子位置传感器有光电式、磁敏式和电磁式三种类型。
采用光电式位置传感器的无刷直流电动机,在定子组件上按一定位置配置了光电传感器件,转子装有遮光板,光源为发光二极管或小灯泡。转子旋转时,由于遮光板的作用,定子上的光敏元器件将会按一定频率间歇发出脉冲信号。
磁敏式位置传感器是指它的某些点阐述随周围磁场按一定规律变化的半导体敏感元件,其基本原理为霍尔效应和磁阻效应。磁敏元件的主要工作原理是电流的磁效应,主要是霍尔效应。采用磁敏式位置传感器的无刷直流电动机,其磁敏传感器件(如霍尔元件、磁敏二极管、磁敏三极管、磁敏电阻器或专用集成电路)装载定子组件上,用来检测永磁体、转子旋转时产生的磁场变化。
采用电磁式位置传感器的无刷直流电动机,是在定子组件上安装电磁传感器部件,当永磁体转子位置发生变化时,电磁效应将使电磁传感器长生高频调制信号(其幅值随转子位置的变化而变化)。
几年来还出现了无位置传感器的无刷直流电动机,词中电动机利用定子绕组的反电动势作为转子磁铁的位置信号,该信号检出后,经数字电路处理,送给逻辑开关电路去控制无刷直流电动机的换向。由于它省去了位置传感器,是的无刷电动机的结构更加紧凑,所以应用日趋广泛。
电子换向器
电子换向电路由功率变换电路和控制电路两大部分组成,它与位置传感器相配合,控制电动机定子各相绕组的通电顺序和时间,起到与机械换向类似的作用。
当系统运行时,功率变换器接受控制电路的控制信息,间该系统工作电源的功率以一定的逻辑关系分配给直流无刷电动机定子上的各相绕组,以便使电动机产生持续不断的转矩。逆变器将直流电流转换成交流电流想电动机供电,与一般逆变器不同,它输出频率不是独立调节的,而是受控于转子位置信号,是一个“自控式逆变器”。永磁无刷电动机BLDCM 由于采用自控式逆变器,电动机输入电流的频率和电动机转速始终保持同步,电动机和逆变器不会产生振荡和失步,这也是永磁无刷电动机BLDCM 的显著优点之一。
电动汽车电机电动机各项绕组导通的顺序和时间主要取决于来自位置传感器的信号,但位置床干起所产生的信号一般不能直接用来驱动功率变换器的功率开关元件,往往需要经过控制电路进行逻辑处理、隔离放大后才能驱动功率变换器的开关元件,往往需要经过控制电路进行逻辑处理、隔离方法后才能驱动功率变换器的开关元件。驱动空盒子电路的作用是将位置传感器检测到的转子位置信号进行处理,按一定的逻辑代码输出,去触发功率开关管。
永磁无刷直流电动机的工作原理
永磁无刷直流电动机的控制系统主要有永磁无刷直流电动机、直流电压、逆变器、位置传感器和控制器几部分组成,采用“三相六拍—120°方波型”驱动。如图所示5.21所示。
永磁无刷直流电动机的控制系统的工作原理图
永磁刷刷直流电动机通过逆变器功率管按一定的规律导通、关断,使电动机定子电枢产生按60°电角度不断前进的磁势,带动电动机转子旋转来实现的。分析如图5.21所示。图a是理想条件下的电枢各相反电势和电流,每个功率管导通120°电角度,互差60°电角度,当功率管V3和V4导通时,电动机的V和—U(电流流进绕组方向为正向)相通(参考图1)。定子电枢合成磁势为图b所示的Fa5;若功率管V3关断,功率管V5导通,此时电动机的W相和—U相通电,电枢合成磁势变为Fa5,Fa5 比Fa4顺时针前进了60°电角度。由此可知,定子电枢产生的磁势将随着功率管有规律地不断导通和关断,并按60°电角度不断地顺时针转动。逆变器功率管共有六种出发组合状态,每种出发组合状态只有与确定的转子位置或发电动机波形相对应,才能产生最大的平均电磁转矩。当两个磁势向量的夹角为90°是,相互作用力最大。而电子电枢产生的磁势是以60°电角度在前进,因此在每种出发模式下,转子磁势与定子磁势的夹角在
永磁无刷直流电动机的工作原理图
60°~120°范围变化才能产生最大的平均电磁转矩。如图c所示,假如在t1时刻,转子的此时Fj处于线圈U、X平面内,且使转子顺时针旋转,此时应该导通功率管V5和V4,使定子的合成磁势为Fa5与Fj的夹角成120°。转子在Fa5与Fj相互作用产生电磁转矩的作用下顺时针旋转,到t3时刻Fa5与Fj的夹角成60°,此时关断功率管V4,导通功率管V6,定子合成磁势为Fa6,与Fj的夹角成120°,两者产生的电磁转矩使转子进一步旋转。