专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测。
互联网本身具有数字化和互动性的特征,这种属性特征给数据搜集、整理、研究带来了革命性的突破。以往“原子世界”中数据分析师要花较高的成本(资金、资源和时间)获取支撑研究、分析的数据,数据的丰富性、全面性、连续性和及时性都比互联网时代差很多。
与传统的数据分析师相比,互联网时代的数据分析师面临的不是数据匮乏,而是数据过剩。因此,互联网时代的数漏碧据分析师必须学会借助技术手段进行高效的数据处理。更为重要的是,互联网时代的数据分析师要不断在数据研究的方法论方面进行创新和突破。
就行业而言,数据分析师的价值与此类似。就新闻出版行业而言,无论在任何时代,媒体运营者能否准确、详细和及时地了解受众状况和变化趋势,都是媒体成败的关键。
扩展资料
数据科学家这个职业的定义有点广泛。同样叫数据科学家,在不轿改同行业不同公司干的活可能是很不一样的。
有的偏机器学习、建模,有的偏数据分析。有的叫数据科学家,干的很多事情跟软件工程师(SWE)很类似。有的偏产品,风格短平快。有的偏长期研究,看的是一两年甚至返帆举更久的效果。
做数据分析的最终目的,那就是通过数据分析来引导产品改进的能力。任何方面的技能,归根结底都需要为这个目的服务。
参考资料来源:百度百科-数据分析师
一是帮助企业看清现状(即通常见的搭建数据指标体系);
二是临时性分析指标变化原因,这个很常见,但也最头疼,有时还没分析出原因,指标可能又变了,注意识别这里面的伪需求(数据本身有波动,什么样的变化才谨大是异常波动?一般以[均值-2*标准差,均值+2*标准差]为参考范围,个别活动则另当别论);
三是专题分析,这个专题可大可小,根据需求方(也有可能是数据分析师自己)而定,大老板提出的专题分析相对更难、更有水平一些;
四是深层次解释关系和预测未来丛闷,这个技术难度和业务理解水平要求相对更高一些。如,影响GMV的关键因子是什么?这里当然不是显而易见的付款用户数和客单价,而是需要探索的隐性因素;再如,预测下一个祥郑竖季度甚至是一年的GMV,以及如何达成?
数据分析师指的是不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。
作用
越来越多的政府机关、企事业单位将选择拥有数据分析师资质的专业人士为他们的项目做出科学、合理的分析、以便正确决策;越来越多的风险投资机构把数据分析师所出具的数据分析报告作为其判断项目是否可行及是否值得投资的重要依据;越来越多的高等院校和教育机构把数据分析师课程作为其中高管理层及决策层培训计划的重要内容;越来越多的有志之士把数据分析师培训内容作为其职业生涯发野隐拿展中必备的知识体系。
2工作颂搭职责
互联网本身具有数字化和互动性的特征,这种属性特征给数据搜集、整理、研究带来了革命性的突破。以往“原子世界”中数据分析师要花较高的成本(资金、资源和时间)获取支撑研究、分析的数据,数据的丰富性、全面性、连续性和及时性都比互联网时代差很多。
与传统的数据分析师相比,互联网时代的数据分析师面临的不是数据匮乏,而是数据过剩。因此,互联网时代的数据分析师必须学会借助技术手段进行高效的数据处理。更为重要的是,互联网时代的数据分析师要不断在数据研究的方法论方面进行创新和突破。
就行业而言,数据分析师的价值与此类似。就新闻出版行业而言,无论在任何时代,媒体运营者能否准确、详细和及时地了解受众状况和变化趋势,都是媒体成败的关键。
此外,对于新闻出版等内容产业来说,更为关键的是,数据分析师可以发挥内容消费者数据分析的职能,这是支撑新闻出版机构改善客户服务的关键职能。
3要求
技能要求
1、懂业务。从事数据分析工作的前提就会需要懂业务,即熟悉行业知识、公司业务及流程,最好有自己独到的见解,若脱离行业认知和公司业务背景,分析的结果只会是脱了线的风筝,没有太大的使用价值。
2、懂管理。一方面是搭建数据分析框架的要求,比如确定分析思路就需要用到营销、管理等理论知识来指导,如果不熟悉管理理论,就很难搭建数据分析的框架,后续的数据分析也很难进行。另一方面的作用是针对数据分析结论提出有指导意义的分析建议。
3、懂分析。指掌握数据分析基本原理与一些有效的数据分析方法,并能灵活运用到实践工作中,以便有效的开展数据分析。基本的分析方法有:对比分析法、分组分析法、交叉分析法、结构分析法、漏斗图分析法、综合评价分析法、因素分析法携蚂、矩阵关联分析法等。高级的分析方法有:相关分析法、回归分析法、聚类分析法、判别分析法、主成分分析法、因子分析法、对应分析法、时间序列等。
4、懂工具。指掌握数据分析相关的常用工具。数据分析方法是理论,而数据分析工具就是实现数据分析方法理论的工具,面对越来越庞大的数据,我们不能依靠计算器进行分析,必须依靠强大的数据分析工具帮我们完成数据分析工作。
5、懂设计。懂设计是指运用图表有效表达数据分析师的分析观点,使分析结果一目了然。图表的设计是门大学问,如图形的选择、版式的设计、颜色的搭配等等,都需要掌握一定的设计原则。[1]
其他要求
良好的沟通交流能力,文字语言表达能力,较好的逻辑分析能力;
具有独立的产品策划开发能力,项目管理,商务沟通能力;
强烈责任心,开放的性格,良好的沟通能力; 擅于协作,具备良好的团队合作精神;
能够在压力下开展工作;善于学习。
4考试等级
当前我国数据分析师由中国商业联合会数据分析专业委员会以及工信部教育考试中心共同考核认证,通过培训考核,工信部教育考试中心颁发《项目数据分析师职业技术证书》,数据分析行业协会颁发《项目数据分析师证书》,此证书是申请成立项目数据分析事务所的必备条件之一。
5培养
国内正式的数据分析行业的认证只有数据分析师认证,由国家工业与信息化部中国电子商务协会在全国开展推广,截至2010年中国数据分析业已拥有数据分析专业人才超过万人,每年以数以千计的速度增长。[2]
对于人才的培养,国家工业与信息化部中国电子商务协会设立全国数据分析师考核鉴定中心在全国各省、直辖市发展授权管理培训中心,开展培训、继续教育工作。
数据分析师工作的流程简单分为两部分,第一部分就是获取数据,第二部分就是对数据进行处理。那么怎么获得数据呢?首先,我们要知道,获取相关的数据,是数据分析的前提。每个企业,都有自己的一套存储稿旁机制。因此,基础的SQL语言是必须的。具备基本SQL基础,再学习下其中细节的语法,基本就可以到很多数据了。当每个需求明确以后,都要根据需要,把相关的数据获取到,做基础数据。
获得了数据以后,才能够进行数据处理工作。获取数据,把数据处理成自己想要的东西,是一个关键点。很多时候,有了数据不是完成,而是分析的开始。数据分析师最重要的工作就是把数据根据需求处理好,只有数据跟需求结合起来,才能发挥数据的价值,看到需求的问题和本质所在。如果连数据都没处理好,何谈从数据中发现问题呢?
就目前而言,大数据日益成为研究行业的重要研究目标。面对其高数据量、多维度与异构化的特点,以及分析方法思路的扩键孙橡展,传统统计工具已经难以应对。所以我们要使用专业的数据分析软件。数据分析工具都有Excel、SPSS、SAS等工具。Excel、SPSS、SAS 这三者对于数据分析师来说并不陌生。但是这三种数据凯源分析工具应对的数据分析的场景并不是相同的,一般来说,SPSS 轻量、易于使用,但功能相对较少,适合常规基本统计分析。而SPSS和SAS作为商业统计软件,提供研究常用的经典统计分析处理。由于SAS 功能丰富而强大,且支持编程扩展其分析能力,适合复杂与高要求的统计性分析。
现在把数据分析师包装的太高大上了,左手Python,右手R,感觉都快无所不能了。其实现状并不是这明搏样。平时工作主要包括:
1)跑数据,也就是利用SQL代码从数据库中调取相关的数据,然后在利用调取过来的数据进行相关的数据分析。
2)支持销售部门分析需求。这个过程基本是伴随着销售部门的需求来的,一般持续时间比较长。我们需要先将销售部门的数据需求进行问题定义,然后进行相关的问题拆解,确定数据源,搜集数据源,数据清洗,数据分析,最终生成可视化的数据分析报告。在这个过程中,最为苦逼的就是需求有时候会变,导致你做的工作可能面临废掉的可能。
3)行业数据分析报告,对于这块,其实偏向于研究性质。我们经常会利用外部数据以及公司内部数据,从行业趋势、人群洞察等方面入手,对该行业进行细致分析。这块最大的困扰是在于数据质量有时很差,不得不苦苦找数据,换思考维度,改逻辑框架。有时候仅仅数据清洗就需要几天,下来都会头昏眼花的。所以,千万不要觉得数据分析师是一个很高大上的职业,谁做谁知道。激余祥
当然,不同性质公司要求数据分析师的职责不同,但是万变不离其宗,基本都是跑数据,作报告,建模型毁数等等。