矩阵的秩和矩阵的特征值个数的关系,并证明

2024-11-20 01:34:14
推荐回答(4个)
回答1:

关系:

1、方阵A不满秩等价于A有零特征值。

2、A的秩不小于A的非零特征值的个数。

证明:

定理1:n阶方阵A可相似对角化的充要条件是A有n个线性无关的特征向量。 

定理2:设A为n阶实对称矩阵,则A必能相似对角化。 

定理3:设A为n阶实对称矩阵,矩阵的秩r(A)=k,(0

定理4:设A为n阶方阵,矩阵的秩r(A)=k,(0

定理5:设A为n阶方阵,矩阵的秩r(A)=k,(0

定理6:设A为n阶方阵,矩阵的秩rf(A)=k,(0

例1:

设矩阵A=1  2   3   42  4   6   83  6   9  124  8  12  16 ,求矩阵A的特征值,矩阵A的秩。 

解:得到A→1  2   3   40  0   0   00  0   0   00  0   0   0 ,则矩阵A的秩r(A)=1。 

通过上例,我们发现λ=0为A的三重特征值,而A的秩r(A)=4-3=1。下面的定理给出了相应的结论。 

证:由定理2,实对称矩阵必能相似对角化,因此A必有n个线性无关的特征向量,即每一个特征值对应一个线性无关的特征向量,重根对应线性无关的特征向量的个数等于其重数[1],故由秩r(A)=k,(0

以上例题和相关定理均给出了矩阵的秩得到矩阵的特征值的情况,反过来,若n阶方阵A恰有k(0

所以,方阵A不满秩等价于A有零特征值,A的秩不小于A的非零特征值的个数。

扩展资料

矩阵的秩是线性代数中的一个概念。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数。通常表示为r(A),rk(A)或rank A。

矩阵的秩的变化规律及证明

1、转置后秩不变

2、r(A)<=min(m,n),A是m*n型矩阵

3、r(kA)=r(A),k不等于0

4、r(A)=0 <=> A=0

5、r(A+B)<=r(A)+r(B)

6、r(AB)<=min(r(A),r(B))

7、r(A)+r(B)-n<=r(AB)

证明:
AB与n阶单位矩阵En构造分块矩阵

|AB O|

|O En|

A分乘下面两块矩阵加到上面两块矩阵,有

|AB A|  

|0 En|

右边两块矩阵分乘-B加到左边两块矩阵,有

|0 A |

|-B En|

所以,r(AB)+n=r(第一个矩阵)=r(最后一个矩阵)>=r(A)+r(B)

即r(A)+r(B)-n<=r(AB)

注:这里的n指的是A的列数。这里假定A是m×n matrix。

特别的:A:m*n,B:n*s,AB=0 -> r(A)+r(B)<=n

8、P,Q为可逆矩阵, 则 r(PA)=r(A)=r(AQ)=r(PAQ)



回答2:

矩阵有特征值必须是方阵
矩阵的秩是最高阶非0子式。
n阶矩阵必定有n个特征值,(特征值可能是虚数)
对于n阶实对称矩阵,不同特征值的高数和矩阵的秩相等

回答3:

最后一句应该改为:对于实对称矩阵或可相似对角化的矩阵,其秩就是非零特征值的个数

回答4:

“关系: 1、方阵A不满秩等价于A有零特征值。 2、A的秩不小于A的非零特征值的个数。 证明: 定理1:n阶方阵A可相似对角化的充要条件是A有n个线性无关的特征向量。 定理2:设A为n阶实对称矩阵,则A必能相似对角化。 定